
Statistical Simulation – An Introduction

Contents

1 Introduction 1

1.1 When We Don’t Need Simulation 1

1.2 Why We Often Need Simulation 2

1.3 Basic Ways We Employ Simulation 2

2 Confidence Interval Estimation 3

2.1 The Confidence Interval Concept 3

2.2 Simple Interval for a Proportion 4

2.3 Wilson’s Interval for a Proportion 5

2.4 Simulation Through Bootstrapping 6

2.5 Comparing the Intervals – Exact Method 8

3 Simulating Replicated Data 14

3.1 Simulating a Posterior Distribution 14

3.2 Predictive Simulation for Generalized Linear Models 15

4 Comparing Simulated Replicated Data to Actual Data 19

1 Introduction

1.1 When We Don’t Need Simulation

When We Don’t Need Simulation

As we have already seen, many situations in statistical inference are easily
handled by asymptotic normal theory. The parameters under consideration
have estimates that are either unbiased or very close to being so, and formulas
for the standard errors allow us to construct confidence intervals around these
parameter estimates. If parameter estimate has a distribution that is reasonably
close to its asymptotic normality at the sample size we are using, then the
confidence interval should perform well in the long run.

1.2 Why We Often Need Simulation

Why We Often Need Simulation

However, many situations, unfortunately, are not so simple. For example:

1. The aymptotic distribution might be known, but convergence to normality
might be painfully slow

2. We may be interested in some complex function of the parameters, and
we haven’t got the statistical expertise to derive even an asymptotic ap-
proximation to the distribution of this function.

In situations like this, we often have a reasonable candidate for the distri-
bution of the basic data generation process, while at the same time we cannot
fathom the distribution of the quantity we are interested in, because that quan-
tity is a very complex function of the data. In such cases, we may be able to
benefit substantially from the use of statistical simulation.

1.3 Basic Ways We Employ Simulation

Simulation in Statistical Inference I

There are several ways that statistical simulation is commonly employed:

Generation of confidence intervals by bootstrapping. In this approach, the
sampling distribution of the parameter estimate θ̂ is simulated by sampling,
over and over, from the current data, and (re-)computing parameter estimates
θ̂∗ from each “bootstrapped” sample. The variability shown by the many θ̂∗

values gives us a hint about the variability of the one estimate θ̂ we got from
our data.

2

Simulation in Statistical Inference II

Monte Carlo investigations of the performance of statistical procedures. In
this approach, the data generation model and the model parameters are spec-
ified, along with a sample size. Data are generated according to the model.
The statistical procedure is applied to the data. This process is repeated many
times, and records are kept, allowing us to examine how the statistical procedure
performs at recovering the (known) true parameter values.

Simulation in Statistical Inference III

Generation of estimated posterior distributions. In the Bayesian framework,
we enter the analysis process with a “prior distribution” of the parameter, and
emerge from the analysis process with a “posterior distribution” that reflects
our knowledge after viewing the data. When we see a θ̂, we have to remember
that it is a point estimate. After seeing it, we would be foolish to assume that
θ = θ̂.

2 Confidence Interval Estimation

2.1 The Confidence Interval Concept

Conventional Confidence Interval Estimation

When we think about confidence interval estimation, it is often in the context
of the mechanical procedure we employ when normal theory pertains. That is,
we take a parameter estimate and add a fixed distance around it, approximately
±2 standard errors.

There is a more general way of thinking about confidence interval estimation,
and that is, the confidence interval is a range of values of the parameter for which
the data cannot reject the parameter.

Conventional Confidence Interval Estimation

For example, consider the traditional confidence interval for the sample mean
when σ is known. Suppose we know that σ = 15 and N = 25 and we observe a
sample mean of X• = 105. Suppose we ask the question, what value of µ is far
enough away from 105 in the positive direction so that the current data would

3

barely reject it? We find that this value of µ is the one that barely produces a
Z-statistic of −1.96.

We can solve for this value of µ, and it is:

−1.96 =
X• − µ
σ/
√
N

=
105− µ

3
(1)

Rearranging, we get µ = 110.88.

Conventional Confidence Interval Estimation

Of course, we are accustomed to obtaining the 110.88 from a slightly different
and more mechanical approach.

The point is, one notion of a confidence interval is that it is a range of points
that includes all values of the parameter that would not be rejected by the data.
This notion was advanced by E.B. Wilson in the early 1900’s.

In many situations, the mechanical approach agrees with the “zone of ac-
ceptability” approach, but in some simple situations, the methods disagree.

As an example, Wilson described an alternative approach to obtaining a
confidence interval on a simple proportion.

2.2 Simple Interval for a Proportion

A Simple Interval for the Proportion

We can illustrate the traditional approach with a confidence interval for a
single binomial sample proportion.

Example 1 (Traditional Confidence Interval for a Population Proportion). Sup-
pose we obtain a sample proportion of p̂ = 0.65 based on a sample size of
N = 100.

The estimated standard error of this proportion is
√
.65(1− .65)/100 =

0.0477.

The standard normal theory 95% confidence interval has endpoints given by
.65± (1.96)(0.0477), so our confidence interval ranges from 0.5565 to 0.7435.

4

A Simple Interval for the Proportion

An R function to compute this interval takes only a couple of lines:

> simple.interval ← function(phat ,N,conf)

+ {

+ z ← qnorm(1-(1 -conf)/2)
+ dist ← z ∗ sqrt(phat∗(1-phat)/N)
+ lower = phat - dist
+ upper = phat + dist
+ return(l i s t (lower= lower,upper=upper))
+ }

> simple.interval(.65 ,100,.95)

$lower

[1] 0.5565157

$upper

[1] 0.7434843

2.3 Wilson’s Interval for a Proportion

Wilson’s Interval

The approach in the preceding example ignores the fact that the standard
error is estimated from the same data used to estimate the sample proportion.
Wilson’s approach asks, which values of p are barely far enough away from p̂
so that p̂ would reject them. These points are the endpoints of the confidence
interval.

Wilson’s Interval

The Wilson approach requires us to solve the equations.

z =
p̂− p√

p(1− p)/N
(2)

and
−z =

p̂− p√
p(1− p)/N

(3)

Be careful to note that the denominator has p, not p̂.

5

Wilson’s Interval

If we square both of the above equations, and simplify by defining θ = z2/N ,
we arrive at

(p̂− p)2 = θp(1− p) (4)

This can be rearranged into a quadratic equation in p, which we learned how
to solve in high school algebra with a (long-forgotten, C.P.?) simple if messy
formula. The solution can be expressed as

p =
1

1 + θ

(
p̂+ θ/2±

√
p̂(1− p̂)θ + θ2/4

)
(5)

Wilson’s Interval

We can easily write an R function to implement this result.

> wilson.interval ← function(phat ,N,conf)

+ {

+ z ← qnorm(1 - (1-conf)/2)
+ theta ← z^2 /N
+ mult ← 1/(1+ theta)
+ dist ← sqrt(phat∗(1-phat)∗theta + theta ^2 / 4)

+ upper = mult∗(phat + theta/2 + dist)
+ lower = mult∗(phat + theta/2 - dist)
+ return(l i s t (lower= lower,upper=upper))
+ }

> wilson.interval(.65 ,100,.95)

$lower

[1] 0.5525444

$upper

[1] 0.7363575

2.4 Simulation Through Bootstrapping

Confidence Intervals through Simulation I

The methods discussed above both assume that the sample distribution of
the proportion is normal. While the distribution is normal under a wide variety

6

of circumstances, it can depart substantially from normality when N is small or
when either p or 1− p approaches 1. An alternative approach to assuming that
the distribution of the estimate is normal is to simulate the distribution.

Confidence Intervals through Simulation II

This non-parametric approach involves:

1. Decide on a number of replications

2. For each replication

(a) Take a random sample of size N , with replacement, from the data

(b) Compute the statistic

(c) Save the results

3. When all the replications are complete, compute the .975 and .025 quan-
tiles in the simulated distribution of estimates

4. These values are the endpoints of a 95% confidence interval

Applying the Simulation Approach I

When the data are binary, the simulation procedure discussed above amounts
to sampling from the binomial distribution with p set equal to the current sample
proportion p̂.

(Note: Gelman & Hill sample from the normal distribution in one of their
examples, but this is not necessary with R.) This involves much more compu-
tational effort than the methods discussed previously.

Applying the Simulation Approach II

> bootstrap.interval ← function(phat ,N,conf ,reps)

+ {

+ lower.p ← (1-conf)/2
+ upper.p ← 1 - lower.p

+ lower ← rep(NA, length(phat))

+ upper ← rep(NA, length(phat))

+ for (i in 1: length(phat))

+ {

+ x ← rbinom(reps ,N,phat[i])

7

+ lower[i] ← quantile(x,lower.p ,names=F)/N
+ upper[i] ← quantile(x,upper.p ,names=F)/N
+ }

+ return(l i s t (lower= lower,upper=upper))
+ }

> bootstrap.interval(.95 ,30,.95 ,1000)

$lower

[1] 0.8666667

$upper

[1] 1

The approach just illustrated is called“bootstrapping by the percentile method.”
Note that it will produce different results when starting from a different seed,
since random draws are involved.

2.5 Comparing the Intervals – Exact Method

Comparing the Intervals I

In many situations, the intervals will yield results very close to each other.

However, suppose p̂ = .95 and N = 30. Then

> simple.interval(.95 ,30,.95)

$lower

[1] 0.8720108

$upper

[1] 1.027989

> bootstrap.interval(.95 ,30,.95 ,1000)

$lower

[1] 0.8666667

$upper

[1] 1

8

Comparing the Intervals II

On the other hand,

> wilson.interval(.95 ,30,.95)

$lower

[1] 0.8094698

$upper

[1] 0.9883682

Now we see that there is a substantial difference between the results. The
question is, which confidence interval actually performs better?

Comparing the Intervals – Exact Calculation

There are a number of ways of characterizing the performance of confidence
intervals. For example, we can examine how close the actual coverage probability
is to the nominal value. In this case, we can, rather easily, compute the exact
coverage probabilities for each interval, because R allows us to compute exact
probabilities from the binomial distribution, and N is small. Therefore, we can

1. Compute every possible value of p̂

2. Determine the confidence interval for that value

3. See whether the confidence interval contains the true value of p

4. Add up the probabilities for intervals that do cover p

An R Function for Exact Calculation

In the R function below, we compute these coverage probabilities for a given
N ,p, and confidence level. (We ignore the fact that the bootstrapped interval
can vary according to the number of replications and the random seed value.)

> actual.coverage.probability ← function(N,p,conf)

+ {

+ x ← 0:N

+ phat ← x/N

9

+ probs ← dbinom(x,N,p)

+ wilson ← wilson.interval(phat ,N,conf)

+ simple ← simple.interval(phat ,N,conf)

+ bootstrap ← bootstrap.interval(phat ,N,conf ,1000)

+ s← 0

+ w← 0

+ b← 0

+ results ← new.env()
+ for (i in 1:N+1) i f ((simple$lower[i] < p)&(simple$upper[i] >p)) s← s+probs[i]

+ for (i in 1:N+1) i f ((wilson$lower[i] < p)&(wilson$upper[i] >p)) w← w+probs[i]

+ for (i in 1:N+1) i f ((bootstrap$lower[i] < p)&(bootstrap$upper[i] >p)) b← b+probs[i]

+ return(l i s t (simple.coverage=s,wilson.coverage=w,bootstrap.coverage=b))
+ }

> actual.coverage.probability (30,.95 ,.95)

$simple.coverage

[1] 0.7820788

$wilson.coverage

[1] 0.9392284

$bootstrap.coverage

[1] 0.7820788

Note that the Wilson interval is close to the nominal coverage level, while the
traditional and bootstrap intervals perform rather poorly.

Comparing the Intervals – Monte Carlo Approach

Suppose that we had not realized that the exact probabilities were available
to us. We could still get an excellent approximation of the exact probabilities
by Monte Carlo simulation.

Monte Carlo simulation works as follows:

1. Choose your parameters

2. Choose a number of replications

3. For each replication:

(a) Generate data according to the model and parameters

(b) Calculate the test statistic or confidence interval

10

(c) Keep track of performance, e.g., whether the test statistic rejects, or
whether the confidence interval includes the true parameter

4. Display the results

Monte Carlo Simulation – An Example Function

In the function below, we simulate 10,000 Monte Carlo replications

> estimate.coverage.probability← function(N,p,conf ,reps ,seed.value =12345)

+ {

+ ## Set seed , create empty matrices to hold results

+ set.seed (seed.value)

+ results ← new.env()
+ coverage.wilson← 0

+ coverage.simple← 0

+ coverage.bootstrap← 0

+ ## Loop through the Monte Carlo replications

+ for (i in 1:reps)

+ {

+ ## create the simulated proportion

+ phat ← rbinom(1,N,p)/N
+ ## calculate the intervals

+ wilson ← wilson.interval(phat ,N,conf)

+ simple ← simple.interval(phat ,N,conf)

+ bootstrap ← bootstrap.interval(phat ,N,conf ,1000)

+ ## test for coverage , and update the count if successful

+ i f ((simple$lower < p)&(simple$upper >p))

+ coverage.simple ← coverage.simple + 1

+ i f ((wilson$lower < p)&(wilson$upper >p))

+ coverage.wilson ← coverage.wilson + 1

+ i f ((bootstrap$lower < p)&(bootstrap$upper >p))

+ coverage.bootstrap ← coverage.bootstrap + 1

+

+ }

+ ## convert results from count to probability

+ results$simple ← coverage.simple/reps
+ results$wilson ← coverage.wilson/reps
+ results$bootstrap ← coverage.bootstrap/reps
+ ## return as a named list

+ return(a s . l i s t (results))

+ }

Some Output

11

> estimate.coverage.probability (30,.95 ,.95 ,10000)

$bootstrap

[1] 0.7853

$wilson

[1] 0.9381

$simple

[1] 0.788

Monte Carlo Simulation across Parameter Values

To get a better idea of the overall performance of the two interval estimation
methods whenN = 30, we might examine coverage rates as a function of p. With
our functions written, we are all set to go. We simply set up a vector of p values,
and store the results as we go.

Here is some code:

> ## set up empty vectors to hold 50 cases

> p ← matrix(NA ,50,1)
> wilson ← matrix(NA ,50,1)
> simple ← matrix(NA ,50,1)
> bootstrap ← matrix(NA ,50,1)
> ## step from .50 to .99 , saving results as we go

> for (i in 1:50)

+ {

+ p[i]← (49+i)/100
+ res ← actual.coverage.probability (30,p[i],.95)

+ wilson[i] ← res$wilson.coverage
+ simple[i] ← res$simple.coverage
+ bootstrap[i] ← res$bootstrap.coverage

+ }

Monte Carlo Simulation – An Example

Below, we graph the results, presenting coverage probability as a function of
p. The performance advantage of the Wilson interval is obvious.

> plot(p,wilson ,type="l",col ="blue",
+ ylim=c(.1,.99),xlab="Population Proportion p",

12

+ ylab="Actual Coverage Probability",main="Confidence Interval Performance (N = 30)")

> l ines (p,simple , col ="green")
> l ines (p,bootstrap , col ="orange")
> abline(.95 ,0,lty=2, col ="red")
> legend(.6,.6,c("Wilson Interval","Simple Interval","Bootstrap Interval"),

+ col =c("blue","green","orange"),lty=c(1,1,1))

0.5 0.6 0.7 0.8 0.9 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Confidence Interval Performance (N = 30)

Population Proportion p

A
ct

ua
l C

ov
er

ag
e

P
ro

ba
bi

lit
y

Wilson Interval
Simple Interval
Bootstrap Interval

Why Do We Need Simulation?

The preceding examples demonstrate how we can use simulation in a very
simple situation, for two essentially different purposes:

1. To help construct confidence intervals after having observed data

2. To examine the performance of a test statistic or interval estimation pro-
cedure in situations where the parameters are “known”

Gelman & Hill refer to the first situation as predictive simulation, and the
second as fake data simulation.

13

The situations we examined, we didn’t actually need simulation – better
procedures were available.

Why Do We Need Simulation?

Simulation is widely used because, in many situations, we don’t have a qual-
ity procedure like the Wilson interval. Even when procedures might exist some-
where in the statistical literature, we might not be aware of them, or be able to
make the appropriate connection. In such situations, simulation can save huge
amounts of time while still providing very accurate answers to our questions.

3 Simulating Replicated Data

3.1 Simulating a Posterior Distribution

Simulating Replicated Data

Gelman & Hill present a library function, sim, for simulating, quickly and
efficiently, a posterior distribution of parameter values from a lm or glm fit object
obtained from predicting y from k predictors in X. The steps in their procedure
are described on page 143.

1. Compute β̂, Vβ = (X ′X)−1, and the estimated residual variance σ̂2 using
standard regression approaches.

2. Create n.sims random simulations of the coefficient vector β and residual
standard deviation σ based on normal theory. That is, for each simulation,
create

(a) σ2 = σ̂2/(χ2
N−k/(N − k))

(b) Given the random draw of σ2, simulate β from a multivariate normal
distribution with mean β̂ and covariance matrix σ2Vβ

3. These distributions represent posterior distributions for the parameters,
representing our uncertainty about them. The assumption is that the
prior distribution is uninformative, i.e., you have essentially no knowledge
of the parameters prior to gathering data.

14

3.2 Predictive Simulation for Generalized Linear Models

Well-Switching

In Gelman & Hill Chapter 5, pages 86–88, an example was introduced in-
volving well-switching behavior in Bangladesh. The first model predicted the
binary well-switching variable from a single predictor, distance from the near-
est well. Figures are potentially confusing, as one involves coefficients obtained
from fitting distance in 100 meter units, the other portrays the fit as a function
of distance “in meters.” We begin by attaching the wells data.

> wells ← read.table("wells.dat", header = TRUE)

> attach(wells)

> dist100 ← dist

Next, we fit a logistic regression, using only the distance in meters to the nearest
known safe well. We expect, of course, that the probability of switching will be
inversely related to the distance.

> fit.1 ← glm(switch ˜ dist , family = binomial (l ink = "logit"))

> display (fit.1 , dig its = 4)

glm(formula = switch ~ dist, family = binomial(link = "logit"))

coef.est coef.se

(Intercept) 0.6060 0.0603

dist -0.0062 0.0010

n = 3020, k = 2

residual deviance = 4076.2, null deviance = 4118.1 (difference = 41.9)

Well Switching II

Next, we simulate the posterior distribution of β0 and β1:

> sim.1 ← sim(fit.1 ,n.sims =1000)

We can plot the posterior bivariate distribution of the coefficients:

> plot(sim.1$coef [,1],sim.1$coef [,2],xlab=expression(beta[0]),

+ ylab=expression(beta[1]))

15

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.4 0.5 0.6 0.7 0.8

−
0.

01
0

−
0.

00
8

−
0.

00
6

−
0.

00
4

ββ0

ββ 1

Picturing Uncertainty

Figure 7.6b demonstrates how you can plot uncertainty in the prediction
equation, by plotting curves corresponding to values from the simulated pos-
terior distribution. Each pair of values corresponds to a plot line. Gelman &
Hill plot 20 lines. I’ve put the line from the original data in red.

> plot(dist ,switch ,pch=".")

> for (s in 1:20)

+ {

+ curve(invlogit (sim.1$coef[s,1] + sim.1$coef[s,2]∗x),
+ col ="gray",add=TRUE)
+ }

> curve(invlogit (fit.1$coef [1] + fit.1$coef [2]∗x), col ="red",add=TRUE)

16

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dist

sw
itc

h

Simulating Predictive Uncertainty

On page 149, Gelman & Hill discuss simulating the uncertainty that occurs
when predicting new outcomes.

In this example, they start with the supposition that there is a ñ× 2 matrix
X̃ representing the values of ñ new households on the predictor variable dist.
This is what they do:

1. For each simulation, they predict the probability of switching using the
predictor values in X̃ and the β values from the simulation

2. Then, for each simulation, they sample a binary (0,1) random variable
with probability equal to the probability of switching from step (1).

3. So, after 1000 simulations, each new household has 1000 (0,1) results, each
based on one value from the (simulated) posterior distribution of β values

4. I am assuming that the proportion of 1’s in the resulting columns is taken
as an estimate of the switching probability that reflects our posterior un-
certainty in the actual slope and intercept values from the original data

17

5. This final matrix also reflects the kinds of (very different) actual result
patterns that might emerge!

Try as I might, I cannot find Figure 7.7. Can anyone help me?

Simulating Predictive Uncertainty – An Example

Here is some code:

> n.sims← 1000

> X.tilde ← matrix(c(1,1,1,1,1,1,1,1,1,1,120,45,109,54,33,254,81,190,101,65),10,2)
> n.tilde ← nrow(X.tilde)

> y.tilde ← array(NA,c(n.sims ,n.tilde))
> for (s in 1: n.sims){

+ p.tilde ← invlogit (X.tilde %∗% sim.1$coef[s,])
+ y.tilde[s,] ← rbinom(n.tilde ,1,p.tilde)

+ }

Simulating Predictive Uncertainty – Sample Output

> y.tilde [1:20 ,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 0 1 0 0 1 0 0

[2,] 1 1 1 0 1 0 1 1 0 1

[3,] 0 0 0 1 1 0 1 0 0 1

[4,] 1 1 1 0 1 0 1 0 0 1

[5,] 1 1 0 1 0 0 1 1 1 0

[6,] 1 1 0 1 1 0 0 0 1 0

[7,] 0 1 1 0 1 0 1 0 1 1

[8,] 1 1 0 0 1 0 0 1 0 0

[9,] 0 1 0 1 0 0 1 1 0 1

[10,] 1 0 1 0 1 0 1 1 1 0

[11,] 1 0 0 1 1 1 1 1 1 1

[12,] 1 1 0 0 1 0 1 1 0 1

[13,] 0 1 0 1 0 1 1 0 1 1

[14,] 0 0 0 0 1 0 0 0 1 1

[15,] 0 1 1 0 1 0 1 1 1 1

[16,] 0 0 0 1 0 0 1 0 0 1

[17,] 0 1 0 1 0 0 1 1 0 0

[18,] 0 0 0 0 0 0 1 0 0 0

[19,] 0 0 1 1 1 0 0 0 1 1

[20,] 0 0 1 0 1 0 0 0 0 1

18

4 Comparing Simulated Replicated Data to Ac-
tual Data

The Newcombe Light Data

As Gelman & Hill point out on page 159, a most fundamental way to check
fit of all aspects of a model is to compare replicated data sets to the actual data.
This example involves Newcombe’s replicated measurements of estimated speed
of light.

> y ← scan ("lightspeed.dat", skip =4)

> # plot the data

> hist (y,breaks =40)

Histogram of y

y

F
re

qu
en

cy

−40 −20 0 20 40

0
2

4
6

8
10

12

The Newcombe Light Data – Simple Normal Fit

> # fit the normal model

> #(i.e. , regression with no predictors)

19

> lm.light ← lm (y ˜ 1)

> display (lm.light)

lm(formula = y ~ 1)

coef.est coef.se

(Intercept) 26.21 1.32

n = 66, k = 1

residual sd = 10.75, R-Squared = 0.00

> n ← length (y)

The Newcombe Light Data – Replications

> n.sims ← 1000

> sim.light ← sim (lm.light , n.sims)

> y.rep ← array (NA, c(n.sims , n))

> for (s in 1: n.sims){

+ y.rep[s,] ← rnorm (1, sim.light$coef[s], sim.light$sigma[s])
+ }

> # gather the minimum values from each sample

>

> test ← function (y){

+ min (y)

+ }

> test.rep ← rep (NA, n.sims)

> for (s in 1: n.sims){

+ test.rep[s] ← test (y.rep[s,])

+ }

The Newcombe Light Data – Replications

> # plot the histogram of test statistics of replications and of actual data

>

> hist (test.rep , xlim=range (test(y), test.rep))

> l ines (rep (test(y), 2), c(0,n), col ="red")

20

Histogram of test.rep

test.rep

F
re

qu
en

cy

−40 −20 0 20 40 60

0
50

10
0

15
0

21

